Bra Underwire Analysis and Non-metal Support Creation

By Maria Menjivar, Trevor Summers and Kelly Fredenburg

April 23, 2014

Motivation

Our project is fueled by complaints and returns made by real women, below are some of the most common problems found in underwire bras.

- Bending/Twisting
 - “The bra is rather flimsy, underwire is not strong”
- Breakage
 - “After only a couple of months wearing, the wires snapped on every single one of them!”
- Poke Through

Customer Needs

<table>
<thead>
<tr>
<th>Mechanical Functions</th>
<th>Aesthetics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Metal Support</td>
<td>Support</td>
</tr>
<tr>
<td>Replacement for metal underwire</td>
<td>Must provide lift and hold the breast tissue without straining.</td>
</tr>
</tbody>
</table>

- Durability:
 - The underwire will not break, twist or distort through extreme usage.
- Fit:
 - Allow the bra to conform to the user’s body and accommodate daily movement.

- Maintain Integrity:
 - The bra will hold its shape through regular use.
- Comfort:
 - Will be comfortable throughout a full day and after many launderings.

Material Analysis

- CES Edupack: Database that analyzes various properties and determines the sufficient materials for the application.
 - Table shows resistance to salt water and distilled water.
 - Upper right hand corner contains materials such as ABS, PET, and PP
- Graph displays fracture toughness and flexural strength
- Blue area includes several types of ABS
- Brown area includes PET and PP

SEM Imaging

- Wires made out of galvanized steel
- Portions of wires shown under 50x, 200x and 500x
- Images display non-uniform surface of the wire
- Determined that the zinc coating is not preventing corrosion along the cracks

Corrosion Baths and Fatigue Testing

- Plain wires submerged in three types of baths:
 - Deionized water
 - Salt water
 - Bleach and Detergent solution
- Wires remained submerged for 1, 2, 3, and 4 weeks
- After removal from the bath, wires were submitted to the fatigue test which grips wires and applies a cyclical load until breakage

Hydrogen Embrittlement

- Rising Step Load (RSL): load increases step-wise over time
- Notched wire is clamped on either end and surrounded by salt water with an electrical current
- Load increases every 4 hours
- Allows hydrogen to diffuse and crack the metal
- Concluded that underwire is susceptible to cracking over time

Controlled Wash Testing

- Three Playtex 38C style 4421
- Control bras had about 0.5 inches of “wire play” in the casing
- Completed 5 complete wash and dry cycles with 6 pound ballast
- Wash cycles: 45 minute cold/cold cycles using AATCC 1993 Standard Ref Detergent WOB
- Dry cycles: 60 minutes at 135° F (high heat)
- Conclusions: Casing had significant shrinkage resulting in minimal “wire play”; early evidence of wire corrosion and surface defects

Materials and Methods

- **SEM Imaging**
- **Fatigue Test**
- **RSL Hydrogen Embrittlement Susceptibility Test**
- **Controlled Wash Testing**

Prototyping and Evaluation

Metal Solution

- Bare wires coated in BlueStar V-04 primer, cure for 20 minutes at room temperature
- Coat both sides of wire with BlueStar RTV 3400 silicone using a pipette, cure 17 hours at room temperature for each side
- Tested in corrosion baths: Water, Salt, and Bleach/detergent

Non-Metal Solution

- Created an AutoCad drawing based on the curvature of the bra cup. Thickness 2.5mm
- 3D printed the solution using ABS plastic
- Evaluated in deflection test: deflected 5.1 cm while metal deflected 0.95 cm. Plastic spring constant: 74.81 Kg/s², Metal spring constant: 322.88 Kg/s²

Out of the Box Solution

- Created an AutoCad drawing based on the bra cup shape. Thickness 2.5mm
- 3D printed the “half cup” using ABS plastic
- Will be printed with a gradient of materials ranging from hard plastic at the bottom to a flexible rubber material at the top
- Objet Connex 350 which prints 2 materials: Vero White and Tango Black

Moving forward

- Develop continuous method for coating metal underwire
- Continue with 3D printing in ISE
- Incorporate solutions into bras and conduct wear trials

Sponsorship & Acknowledgements

This project is sponsored by Hanesbrands, Inc.

HANES Brands Inc

Special thanks to Keith Zimmerman, Ruth May and Mike Abbott

Senior Design Faculty Mentors: Dr. Russell Gorga, Dr. Jesse Jur, & Dr. Jon Rust

TE/TT Senior Design 2013-2014