Xiaomeng Fang

Xiaomeng Fang

Assistant Professor

Textile Engineering, Chemistry and Science
Textile Technology

Wilson College Directory

About Xiaomeng Fang

Xiaomeng Fang received her Ph.D. in Fiber and Polymer Science from North Carolina State University in 2017. Prior to joining the NC State faculty, she was a lecturer in Textile Engineering, Chemistry and Science (TECS) department, meanwhile a postdoctoral researcher in the Textile Protection and Comfort Center (TPACC). Dr. Fang has been teaching various textile technology courses (yarn spinning technology, weaving technology, knitting technology and introduction to fiber science) at undergraduate level.

Dr. Fang is fascinated by the art and precision of assembling the tiny little fibers into the variety of products that we use every day and everywhere. Her research work focus on development of advanced flexible/fiber-based electronics, such as fiber actuator, fiber sensor and generator as well as functional/smart textiles assembled by fiber electronics. Additionally, she also investigated textile protection/comfort and textile reinforced composites. Her overarching research interest is application of fibers and textiles to solve many of the life quality issues including health and well-being.


Teaching and Research Interests

  • Textile Electronics (fiber/textile-based electrical devices)
  • Textile Manufacturing Technologies (spinning, weaving, knitting, nonwovens, etc.)
  • Fiber and Polymer Science (including relevant nano-materials/technologies)
  • Textile Product Development
  • Design and Analysis of Textile Structural Composites
  • Electroactive Polymers and Devices
  • Textile Protection and Comfort
  • Mechanics of Fibrous Assemblies


The following are examples of her current research projects:

Fiber actuator/sensor

Wearable electronic devices are increasingly becoming a part of our daily lives. As the field of flexible electronics progresses, there is significant research underway to integrate wearable and other electronic capabilities into textiles. The motivation is obvious since smart textiles can be potentially employed in a wide range of applications. The unique and desirable properties of textiles are mostly derived from their hierarchical structure with fibers as building blocks. Fiber-based electrical devices are inherently advantageous because they combine breathability, conformability, strength and stability of textiles with electrical functionalities.

Fiber actuators and sensors, possessing excellent flexibility and inherent small scale. Obviously, they can be integrated into textiles, such as woven, knitting and nonwovens, to develop wearable smart systems for human health, protection or rehabilitation. These devices are also crucial components in smart systems that can monitor signals and generate responses in very confined space.

Integrating fiber electronics into textiles

To integrate fiber electronics into fabrics, textile technology provides variety of possibilities. Woven fabrics consist of two systems of orthogonal interlaced yarns that is ideal structure to assemble electrical circuits, such as tic-tac-toe logical controlled smart textiles; Knit fabrics consist of yarn loops are generally more flexible/deformable structures. Some of these are suitable for fabric actuators with large deformation capability.

Responsive Materials

Electroactive polymers (EAPs) exhibit shape change when subjected to an electric field. They are lightweight, soft, and inexpensive, while they are easy to process, shape, and tune to offer a broad range of mechanical and electrical properties. Dielectric electroactive polymers (D-EAP) constitute a class of EAPs with great potential. D-EAPs consist of physically or chemically cross-linked macromolecular networks and are mechanically isotopic. Therefore, in most actuator applications that require directional electromechanical response, it is necessary to use other complex means to direct the stress/strain in the preferred direction.


Academic Degrees

  • B.S. Textile Science and Engineering, Donghua University, 2008
  • M.S. Textile Material Science and Product Development, Donghua University, 2011
  • Ph.D. Fiber and Polymer Science, North Carolina State University, 2017


High strain rate compressive response of the C-f/SiC composite
Luan, K., Liu, J., Sun, B., Zhang, W., Hu, J., Fang, X., … Song, E. (2019), CERAMICS INTERNATIONAL, 45(6), 6812–6818. https://doi.org/10.1016/j.ceramint.2018.12.174
Hybrid Carbon Nanotube Fabrics with Sacrificial Nanofibers for Flexible High Performance Lithium-Ion Battery Anodes
Yildiz, O., Dirican, M., Fang, X., Fu, K., Jia, H., Stano, K., … Bradford, P. D. (2019), JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 166(4), A473–479. https://doi.org/10.1149/2.0821902jes
Enhanced anisotropic response of dielectric elastomer actuators with microcombed and etched carbon nanotube sheet electrodes
Fang, X. M., Li, A., Yildiz, O., Shao, H. Q., Bradford, P. D., & Ghosh, T. K. (2017), Carbon, 120, 366–373. https://doi.org/10.1016/j.carbon.2017.05.067
Nanoscale considerations responsible for diverse macroscopic phase behavior in monosubstituted isobutyl-POSS/poly(ethylene oxide) blends
Caydamli, Y., Yildirim, E., Shen, J., Fang, X., Pasquinelli, M. A., Spontak, R. J., & Tonelli, A. E. (2017), Soft Matter, 13(46), 8672–8677. https://doi.org/10.1039/c7sm01788j
Carbon nanotube sheet electrodes for anisotropic actuation of dielectric elastomers
Cakmak, E., Fang, X. M., Yildiz, O., Bradford, P. D., & Ghosh, T. K. (2015), Carbon, 89, 113–120. https://doi.org/10.1016/j.carbon.2015.03.011
Crystallization behaviors of modified poly(ethylene terephthalate) and their self-nucleation ability
Yang, H., Caydamli, Y., Fang, X., & Tonelli, A. E. (2015), Macromolecular Materials and Engineering, 300(4), 403–413. https://doi.org/10.1002/mame.201400348
Flexible binder-free silicon/silica/carbon nanofiber composites as anode for lithium-ion batteries
Dirican, M., Yildiz, O., Lu, Y., Fang, X., Jiang, H., Kizil, H., & Zhang, X. (2015), Electrochimica Acta, 169, 52–60. https://doi.org/10.1016/j.electacta.2015.04.035
Comparison of the Mechanical Properties between 2D and 3D Orthogonal Woven Ramie Fiber Reinforced Polypropylene Composites
Zhang, Q., Fang, X., Sun, X., Sun, B., & Qiu, Y. (2014), Polymers and Polymer Composites, 22(2), 187–192. https://doi.org/10.1177/096739111402200216
Light-Weighting Design of Eco-Power Automobile Chassis Made from Green Composite and its Topology Optimization in FEA
Sun, B. Z., Luan, K., Gu, B. H., Fang, X. M., & Zhang, J. J. (2011), Advanced Materials Research, 341-342, 183–188. https://doi.org/10.4028/www.scientific.net/amr.341-342.183

View All Publications


  • TMS 211 - Introduction to Fiber Science , Spring 2018
  • TMS 211 - Introduction to Fiber Science , Fall 2018
  • TT 327 - Yarn Production and Properties , Fall 2018
  • TT 351 - Woven Products and Processes , Spring 2019
  • TT 105 601 - Introduction to Textile Technology , Summer II 2018
  • TT 341 - Knitted Fabric Technology , Spring 2020
  • TT 105 601 - Introduction to Textile Technology , Summer II 2020