Martin King
Bio
Martin King is regarded as an international specialist in the area of biotextiles, implantable devices, biomaterials and medical textiles. He joined the Department of Textiles and Apparel, Technology and Management in September 2000 following over 30 years experience working in industry, education and the government sector in Canada and Europe. As one of the first graduates in Polymer Technology from Manchester University, U.K., Martin King was hired by Canadian Industries Limited (I.C.I. Fibres Division), and later by Celanese Canada Limited, Montreal, Canada, to work as a product development engineer on nylon and polyester fibers and yarns at its Millhaven plant in Kingston, Ontario, Canada . During this time he worked on the start-up of the first continuous polymerisation plant for the spinning of short staple polyester fiber for blending with cotton, on improvements in texturising nylon and polyester multifilament yarns, as well as developing polyester fibre/rubber adhesive systems that led to the manufacture of the first commercial polyester tire cord. Martin King then returned to the U.K. to work with L.N. Phillips and W. Watt on the development of carbon fibers at the Royal Aircraft Establishment (now the Defence Science and Technology Laboratory), Farnborough, Hants. He was instrumental in identifying alternative precursor polymer systems and wet spinning and carbonising biconstituent acrylic/novoloid fibers for use in carbon fiber reinforced composites. Over the last 25 years Martin King has developed an interest in the field of biomaterials and biotextiles (a term he has coined to describe the application of fibrous structures designed specifically for biological environments). During his 28 year tenure as a faculty member in the Department of Clothing & Textiles at the University of Manitoba, Winnipeg, Canada, he has worked with his graduate students on many research projects related to the study of implantable devices and has published widely in the textile science, biomaterials and medical literature. Support for these projects has come from national funding agencies, medical foundations and industrial sponsors. During his time at the University of Manitoba, Martin King taught undergraduate courses in textile science and design, apparel engineering, applied economics and the appreciation of research. At NCSU he is currently teaching TT 331, Performance Evaluation of Textile Materials. At the graduate level, he has taught courses in polymer, fiber and textile science, biomaterials and research methods. He has advised and examined graduate and undergraduate students from a variety of disciplines, such as chemistry, civil, mechanical, biomedical and biosystems engineering, architecture, food science, anthropology, surgery, history and computer science, with their textiles, apparel or biomaterials related research projects. In 1989 he was awarded the University of Manitoba Merit Award for Teaching, Research & Service. Martin King is a member of a number of professional organizations, including the following: He has served these organizations in various capacities including President of the Institute of Textile Science and the Canadian Biomaterials Society. Over the years he has been recognised as an expert witness by different courts to present forensic evidence on topics related to the identification, damage and failure of textiles, apparel and surgical implants in cases of misleading advertising, product failure, patent litigation, medical liability, fire injury, rape and murder. He also currently holds adjunct appointments in clothing & textiles in the Faculty of Human Ecology at the University of Manitoba, Winnipeg, Canada and in biomaterials science at Laval University, Quebec City, Canada. Martin King’s primary research thrust is currently in the area of biotextiles, biomaterials science and implantable devices. This is an emerging specialised field that has its roots in materials science, but which now relies heavily on the interaction between many different disciplines. Martin King’s particular approach has grown out of his interest in the degradation processes of fibers, polymers and textiles, and issues related to structure/property relationships. His work involves a number of arenas of activity. The specific types of surgical products that have been studied include: Martin King’s ability to work within a multidisciplinary framework has been enhanced by his appointment over the last 17 years as a visiting professor in the Department of Surgery and the Quebec Biomaterials Institute at Laval University, Quebec City, Canada. By working in a hospital environment as well as a textiles research laboratory he has been able to create working interfaces between the physical and biological sciences and between the research process and clinical practice. He challenges his graduate students who come from such diverse disciplines as chemistry, immunology, mechanical engineering, cell biology, geology, biochemistry, surgery and textile science to work in teams to solve clinical, engineering and scientific problems.Martin King and his graduate students are also actively involved in research into the harvesting, retting and processing of textile quality bast fibers such as linen and industrial hemp, and into the sensory properties of textiles, particularly the measurement of odor intensity by human panels, biosensors and electronic nose technologies.
Research
Education
Ph.D Gýnie biologique (Biomedical engineering) Université de Technologie de Compiègne 1992
F.I.T.S Fellowship Institute of Textile Science 1991
A.U.M.I.S.T. Polymer & Fibre Science University of Manchester Institute of Science & Technology 1970
B.S. (1st class) Polymer Technology University of Manchester 1966
Area(s) of Expertise
Fiber Science
Medical Textiles
Polymer Science
Publications
- Biological tissue for transcatheter aortic valve: The effect of crimping on fatigue strength , JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS (2024)
- Encapsulated stretchable amphibious strain sensors , MATERIALS HORIZONS (2024)
- Mechanical fabrication and evaluation of bioresorbable barbed sutures with different barb geometries , BIOMEDICAL MATERIALS (2024)
- Preparation and Characterization of Hydrogels Fabricated From Chitosan and Poly(vinyl alcohol) for Tissue Engineering Applications , ACS APPLIED BIO MATERIALS (2024)
- A Review of Barbed Sutures-Evolution, Applications and Clinical Significance , BIOENGINEERING-BASEL (2023)
- A textile-reinforced composite vascular graft that modulates macrophage polarization and enhances endothelial cell migration, adhesion and proliferation in vitro , SOFT MATTER (2023)
- Degradation of Poly(ε-caprolactone) Resorbable Multifilament Yarn under Physiological Conditions , POLYMERS (2023)
- Heparin Affinity-Based IL-4 Delivery to Modulate Macrophage Phenotype and Endothelial Cell Activity In Vitro , ACS Applied Materials & Interfaces (2023)
- Techniques for navigating postsurgical adhesions: Insights into mechanisms and future directions , BIOENGINEERING & TRANSLATIONAL MEDICINE (2023)
- A collagen/PLA hybrid scaffold supports tendon-derived cell growth for tendon repair and regeneration , JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS (2022)