Skip to main content

R Bryan Ormond

Assoc Professor

Textiles Complex 3401

Bio

Organizations

Teaching

  • PCC 106 – Polymer Chemistry and Environmental Sustainability ,
  • PCC 201 – Impact of Industry on the Environment and Society ,
  • PCC 442 – Physio-Chemical Processes in Textiles ,
  • TC 589 – Protective Clothing and Equipment for Chemical and Biological Hazards , Spring

Education

B.S. Polymer and Color Chemistry, ACS Certified North Carolina State University 2007

Ph.D. Fiber and Polymer Science North Carolina State University 2012

Area(s) of Expertise

Dyeing and Finishing
Performance Textiles
Protective Textiles
Testing and Materials Evaluation
Textile Chemistry
Textile Comfort

Publications

View all publications 

Grants

Date: 01/01/23 - 6/30/25
Amount: $500,000.00
Funding Agencies: California Department of Forestry & Fire Protection (CAL FIRE)

The goal of these projects are to provide a report including recommendations with sound justification from research data to identify ways to enhance existing wildland personal protective equipment provided to wildland firefighters to better protect against the various elements they are exposed to in the course of their firefighting operations in the WUI.

Date: 09/07/21 - 5/06/25
Amount: $1,500,000.00
Funding Agencies: US Dept. of Homeland Security (DHS)

Purpose & Aims: Our aim is to improve the health and safety of firefighters by developing a strategy for incorporation of appropriate contamination resistance measures in NPFA 1971 and 1851 without compromising the protection that firefighters need against fireground and environmental hazards. We will accomplish this by reviewing NFPA requirements regarding contamination resistance, assessing the impacts of contamination resistance on ensemble performance, and determining the impact of ageing on contamination resistance, performance, and exposure. Relevance: This work will fill a significant knowledge gap associated with contamination resistance measures, such as fluorinated and non-fluorinated repellent finishes, and their impacts on liquid, particulate, and chemical contamination, cleaning efficacy, and management of thermal energy in both a new and aged state. Methods: Turnout composites with varying constructions and repellency treatments will be subjected to ageing through UV and laundering. Both new and aged composites will be realistically contaminated with smoke and chemicals in the Fireground Exposure Simulator. To determine performance trade-offs, clean and contaminated composites will be evaluated for ability to resist chemical and particulate contamination, cleaning efficacy, thermal protection from convective and radiant heat, and impact of radiant load on total heat loss. Anticipated Outcomes: This research will provide an independent and thorough evaluation of the impacts that contamination resistance measures have on the turnout performance and firefighter exposures to contaminants. The research findings will inform the NFPA 1971 and 1851 standards during their revision processes, and it will allow firefighters to conduct their own assessments of risk associated with potential trade-offs.

Date: 01/01/23 - 3/20/25
Amount: $275,000.00
Funding Agencies: US Dept. of Homeland Security (DHS)

Since it was originally issued over a decade ago, no respiratory protection devices have been manufactured or submitted for certification under the NFPA 1984 Standard on Respirators for Wildland Fire-Fighting and Wildland Urban Interface Operations. In 2016, NIOSH presented to the NFPA Technical and Correlating Committee the barriers to acceptance, adoption, and implementation. While agencies agreed that the performance standards were appropriate for wildland exposures and that technology existed to produce a certifiable product, the main reason manufacturers had not submitted a product for certification was that there was no perceived market for the device since no firefighting management agencies required firefighters to utilize respiratory protection. Indeed, federal wildland agencies cannot require PPE until NFPA 1984 compliant devices are available. The newly released 2022 standard provides greater clarity on the goals and criteria, with increased recognition of risk in the WUI, however many of the same barriers to understanding, acceptance, and adoption continue to be relevant today. This project will help overcome this significant disconnect through an interdisciplinary and collaborative program that provides a national-scale education, training, and implementation campaign that brings together fire agencies, manufacturers, regulatory agencies, and subject matter experts to facilitate understanding, acceptance, and adoption of wildland/WUI respiratory protection.

Date: 11/03/22 - 2/07/25
Amount: $423,035.00
Funding Agencies: Countering Weapons of Mass Destruction (CWMD) Consortium

Large scale testing of chemical protective apparel for the Joint Program Executive Office for Chemical, Biological, Radiological and Nuclear Defense (JPEO-CBRND) Joint Project Manager CBRN Protection (JPM CBRN P) is an important part of its assessment for use in the field. Due to the high toxicity of chemical warfare agents (CWAs), the skin dose incurred under relevant exposure scenarios is assessed using a simulant with similar physical properties. Methyl Salicylate (MeS) is a commonly used simulant for assessing sulfur mustard (HD) exposure. The dose of MeS in contact with the skin is currently estimated via its uptake onto Passive Adsorbent Dosimeters (PADs) placed at several sampling points across the body of human test participants. The degree to which the data collected by these samplers represent an actual whole-body dose is poorly understood. Typically, the measured amounts of MeS on each sampler are analyzed through a Body Region Hazard Analysis to determine the protection factor at each sampler location as well as a summation of all data points to estimate a systemic or total body protection factor. Having a better understanding of whole-body dose following skin exposure to MeS would enable more accurate assessments of the effectiveness of vapor-protective clothing.

Date: 01/01/22 - 6/30/24
Amount: $247,036.00
Funding Agencies: National Institute of Standards & Technology

The per- and polyfluoroalkyl substance (PFAS) family of chemicals has been used extensively across many commercial products for decades, but their persistent and toxic nature has resulted in them being linked to multiple adverse health effects in recent years. Firefighters can have increased exposure to these compounds by burning treated materials, working with aqueous film-forming foams, and through contact with their protective clothing, which are often treated with the chemicals to impart repellency. This project seeks to determine the extent to which a selection of PFAS chemicals can transfer from protective clothing and absorb into the skin to improve the health and safety of firefighters.

Date: 01/01/21 - 3/28/24
Amount: $1,058,144.00
Funding Agencies: US Dept. of Homeland Security (DHS)

Purpose & Aims: Our aim is to improve the health and safety of fire investigators by determining the effectiveness of PPE and post-fire skin-cleansing wipes for mitigating exposures to toxic fireground contaminants while conducting investigations.

Date: 06/29/20 - 6/30/23
Amount: $10,000.00
Funding Agencies: Elevate Textiles, Inc.

Elevate Textiles/ITG Burlington has developed a finish for the Army Combat Uniform (ACU) to provide protection from biting insects. To evaluate the efficacy of this finish, they have first identified the need to provide validated analytical methods and testing for the extraction and analysis of the active ingredients. This analysis would then be used on freshly finished fabric to determine percent add-on of the ingredients as well as on fabric following laundering cycles to evaluate the durability to wash. The fabrics are treated with a combination of insect repellent (Oil of Lemon Eucalyptus) and insecticide (Permethrin) chemistries. For this research project, the Textile Protection and Comfort Center (TPACC) at NC State University will develop and validate the extraction and analysis methods required to analyze the chosen insecticides/repellents simultaneously. Following method validation, materials from plant trials will be evaluated before and after laundering.

Date: 03/15/21 - 5/14/23
Amount: $493,800.00
Funding Agencies: Centers for Disease Control and Prevention

This project will develop an advanced animatronic head form test method for measuring the filtration efficiency and breathing resistance of low cost cloth face coverings (CFCs) in realistic simulations of dynamic human wear. The project will use data provided by this unique test platform to produce a metric that combines CFC filtration and breathability performance to provide manufacturers and users with an easy to understand quantitative rating of CFC functionality. The value of this new test method will be demonstrated by assessing the effects of design and facial wearing configuration on particle capture efficiency and breathability. We will test a wide range of low cost CFCs representing different materials and design options (ranging from the ����������������do-it-yourself��������������� or DIY and industrial manufacturer versions), including the features outlined in the AATCC Guidance Monograph for General Purpose Textile Face Coverings1. We will employ the method to characterize the effects of CFCs on the propagation of aerosolized particles produced in breathing, talking, coughing and conduct human subject fit tests to validate instrument predictions of filtration efficiency and breathing resistance.

Date: 10/01/20 - 2/28/23
Amount: $197,000.00
Funding Agencies: US Dept. of Homeland Security (DHS)

Firefighting continues to be among the most hazardous yet least studied professions in terms of occupational exposures and risk ������������������ even less is known about wildland firefighters. This project will assess current PPE usage and pathways of occupational exposures and use this information to create mitigation and risk reducing protocols and decontamination procedures with the aim of ameliorating occupational exposures in wildland firefighters. Long term, the protocols and procedures developed through this program assessment will contribute to reducing the cancer burden in the firefighter population . The goals are to: 1) provide an improved understanding and assessment of wildland/WUI PPE for hazardous particulate and vapor protection, 2) develop mitigation measures and decontamination protocols to reduce exposure, and 3) provide long-term training programs to facilitate dissemination and encourage adoption by fire departments throughout the U.S. We will deliver a program that provides meaningful improvements in the health and safety of our firefighters and improving preparedness and community resilience.

Date: 09/18/19 - 3/17/22
Amount: $750,000.00
Funding Agencies: US Dept. of Homeland Security (DHS)

Purpose & Aims: Critically review and assess NFPA standards and improve system-level testing methods by investigating application and relevance to fire service and responder communities. Current material-level tests outlined in NFPA standards are useful for characterizing fabrics used in protective garments; they do not capture the full system-level performance for user wear during various tasks. Full examination and range of system-level evaluations will be conducted and aid in developing an updated testing platform which firefighters can use to assess their own ensemble and support development of a new NFPA standard. Relevance: Full system-level tests in NFPA standards are impactful in assessing protective clothing as worn by the responder; however, some of these methods lack comprehensive evaluation for its application in integration and interoperability. This research will provide the basis and support for a new NFPA standard for system-level evaluations of the responder in addition to providing the responder community with testing protocols that can be conducted at their respective station for assessment. Methods: Material and system level methods will be implemented to research, examine, and assess current test methods utilized in NFPA standards. NCSU������������������s capabilities with manikin systems, in-depth knowledge of users and standards, and expertise in human wear testing will provide unprecedented evaluations specific to protective systems worn against a multitude of encountered hazards. Anticipated Outcomes: This research will contribute to improve firefighter protection and promote education through the creation and design of test methods implemented in a new NFPA standard focused on integration and interoperability of protective ensembles.


View all grants